百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

看完这篇,你也可以实现一个360度全景插件(一)原理篇

zhezhongyun 2025-02-04 17:07 23 浏览

导读

本文从绘图基础开始讲起,详细介绍了如何使用Three.js开发一个功能齐全的全景插件。

我们先来看一下插件的效果:

如果你对Three.js已经很熟悉了,或者你想跳过基础理论,那么你可以直接从全景预览开始看起。

本项目的github地址:https://github.com/ConardLi/tpanorama

#一、理清关系

#1.1 OpenGL

OpenGL是用于渲染2D、3D量图形的跨语言、跨平台的应用程序编程接口(API)。

这个接口由近350个不同的函数调用组成,用来从简单的图形比特绘制复杂的三维景象。

OpenGL ES 是OpenGL三维图形API的子集,针对手机、PDA和游戏主机等嵌入式设备而设计。

基于OpenGL,一般使用C或Cpp开发,对前端开发者来说不是很友好。

#1.2 WebGL

WebGL把JavaScript和OpenGL ES 2.0结合在一起,从而为前端开发者提供了使用JavaScript编写3D效果的能力。

WebGL为HTML5 Canvas提供硬件3D加速渲染,这样Web开发人员就可以借助系统显卡来在浏览器里更流畅地展示3D场景和模型了,还能创建复杂的导航和数据视觉化。

#1.3 Canvas

Canvas是一个可以自由制定大小的矩形区域,可以通过JavaScript可以对矩形区域进行操作,可以自由的绘制图形,文字等。

一般使用Canvas都是使用它的2d的context功能,进行2d绘图,这是其本身的能力。

和这个相对的,WebGL是三维,可以描画3D图形,WebGL,想要在浏览器上进行呈现,它必须需要一个载体,这个载体就是Canvas,区别于之前的2dcontext,还可以从Canvas中获取webglcontext。

#1.4 Three.js

我们先来从字面意思理解下:Three代表3D,js代表JavaScript,即使用JavaScript来开发3D效果。

Three.js是使用JavaScript对 WebGL接口进行封装与简化而形成的一个易用的3D库。

直接使用WebGL进行开发对于开发者来说成本相对来说是比较高的,它需要你掌握较多的计算机图形学知识。

Three.js在一定程度上简化了一些规范和难以理解的概念,对很多API进行了简化,这大大降低了学习和开发三维效果成本。

下面我们来具体看一下使用Three.js必须要知道的知识。

#二、Three.js基础知识

使用Three.js绘制一个三维效果,至少需要以下几个步骤:

  • 创建一个容纳三维空间的场景 — Sence
  • 将需要绘制的元素加入到场景中,对元素的形状、材料、阴影等进行设置
  • 给定一个观察场景的位置,以及观察角度,我们用相机对象(Camera)来控制
  • 将绘制好的元素使用渲染器(Renderer)进行渲染,最终呈现在浏览器上

拿电影来类比的话,场景对应于整个布景空间,相机是拍摄镜头,渲染器用来把拍摄好的场景转换成胶卷。

#2.1 场景

场景允许你设置哪些对象被three.js渲染以及渲染在哪里。

我们在场景中放置对象、灯光和相机。

很简单,直接创建一个Scene的实例即可。

 _scene = new Scene();

#2.2 元素

有了场景,我们接下来就需要场景里应该展示哪些东西。

一个复杂的三维场景往往就是由非常多的元素搭建起来的,这些元素可能是一些自定义的几何体(Geometry),或者外部导入的复杂模型。

Three.js 为我们提供了非常多的Geometry,例如SphereGeometry(球体)、 TetrahedronGeometry(四面体)、TorusGeometry(圆环体)等等。

在Three.js中,材质(Material)决定了几何图形具体是以什么形式展现的。它包括了一个几何体如何形状以外的其他属性,例如色彩、纹理、透明度等等,Material和Geometry是相辅相成的,必须结合使用。

下面的代码我们创建了一个长方体体,赋予它基础网孔材料(MeshBasicMaterial)

    var geometry = new THREE.BoxGeometry(200, 100, 100);
    var material = new THREE.MeshBasicMaterial({ color: 0x645d50 });
    var mesh = new THREE.Mesh(geometry, material);
            _scene.add(mesh);

能以这个角度看到几何体实际上是相机的功劳,这个我们下面的章节再介绍,这让我们看到一个几何体的轮廓,但是感觉怪怪的,这并不像一个几何体,实际上我们还需要为它添加光照和阴影,这会让几何体看起来更真实。

基础网孔材料(MeshBasicMaterial)不受光照影响的,它不会产生阴影,下面我们为几何体换一种受光照影响的材料:网格标准材质(Standard Material),并为它添加一些光照:

    var geometry = new THREE.BoxGeometry(200, 100, 100);
    var material = new THREE.MeshStandardMaterial({ color: 0x645d50 });
    var mesh = new THREE.Mesh(geometry, material);
    _scene.add(mesh);
    // 创建平行光-照亮几何体
    var directionalLight = new THREE.DirectionalLight(0xffffff, 1);
     directionalLight.position.set(-4, 8, 12);
    _scene.add(directionalLight);
    // 创建环境光
    var ambientLight = new THREE.AmbientLight(0xffffff);
    _scene.add(ambientLight);

有了光线的渲染,让几何体看起来更具有3D效果,Three.js中光源有很多种,我们上面使用了环境光(AmbientLight)和平行光(DirectionalLight)。

环境光会对场景中的所有物品进行颜色渲染。

平行光你可以认为像太阳光一样,从极远处射向场景中的光。它具有方向性,也可以启动物体对光的反射效果。

除了这两种光,Three.js还提供了其他几种光源,它们适用于不同情况下对不同材质的渲染,可以根据实际情况选择。

#2.3 坐标系

在说相机之前,我们还是先来了解一下坐标系的概念:

在三维世界中,坐标定义了一个元素所处于三维空间的位置,坐标系的原点即坐标的基准点。

最常用的,我们使用距离原点的三个长度(距离x轴、距离y轴、距离z轴)来定义一个位置,这就是直角坐标系。

在判定坐标系时,我们通常使用大拇指、食指和中指,并互为90度。大拇指代表X轴,食指代表Y轴,中指代表Z轴。

这就产生了两种坐标系:左手坐标系和右手坐标系。

Three.js中使用的坐标系即右手坐标系。

我们可以在我们的场景中添加一个坐标系,这样我们可以清楚的看到元素处于什么位置:

 var axisHelper = new THREE.AxisHelper(600);
 _scene.add(axisHelper);

其中红色代表X轴,绿色代表Y轴,蓝色代表Z轴。

#2.4 相机

上面看到的几何体的效果,如果不创建一个相机(Camera),是什么也看不到的,因为默认的观察点在坐标轴原点,它处于几何体的内部。

相机(Camera)指定了我们在什么位置观察这个三维场景,以及以什么样的角度进行观察。

#2.4.1 两种相机的区别

目前Three.js提供了几种不同的相机,最常用的,也是下面插件中使用的两种相机是:PerspectiveCamera(透视相机)、 OrthographicCamera(正交投影相机)。

上面的图很清楚的解释了两种相机的区别:

右侧是 OrthographicCamera(正交投影相机)他不具有透视效果,即物体的大小不受远近距离的影响,对应的是投影中的正交投影。我们数学课本上所画的几何体大多数都采用这种投影。

左侧是PerspectiveCamera(透视相机),这符合我们正常人的视野,近大远小,对应的是投影中的透视投影。

如果你想让场景看起来更真实,更具有立体感,那么采用透视相机最合适,如果场景中有一些元素你不想让他随着远近放大缩小,那么采用正交投影相机最合适。

#2.4.2 构造参数

我们再分别来看看两个创建两个相机需要什么参数:

_camera = new OrthographicCamera(left, right, top, bottom, near, far);

OrthographicCamera接收六个参数,left, right, top, bottom分别对应上、下、左、右、远、近的一个距离,超过这些距离的元素将不会出现在视野范围内,也不会被浏览器绘制。实际上,这六个距离就构成了一个立方体,所以OrthographicCamera的可视范围永远在这个立方体内。

_camera = new PerspectiveCamera(fov, aspect, near, far);

PerspectiveCamera接收四个参数,near、far和上面的相同,分别对应相机可观测的最远和最近距离;fov代表水平范围可观测的角度,fov越大,水平范围能观测到的范围越广;aspect代表水平方向和竖直方向可观测距离的比值,所以fov和aspect就可以确定垂直范围内能观测到的范围。

#2.4.3 position、lookAt

关于相机还有两个必须要知道的点,一个是position属性,一个是lookAt函数:

position属性指定了相机所处的位置。

lookAt函数指定相机观察的方向。

实际上position的值和lookAt接收的参数都是一个类型为Vector3的对象,这个对象用来表示三维空间中的坐标,它有三个属性:x、y、z分别代表距离x轴、距离y轴、距离z轴的距离。

下面,我们让相机观察的方向指向原点,另外分别让x、y、z为0,另外两个参数不为0,看一下视野会发生什么变化:

_camera = new OrthographicCamera(-window.innerWidth / 2, window.innerWidth / 2, window.innerHeight / 2, -window.innerHeight / 2, 0.1, 1000);
 _camera.lookAt(new THREE.Vector3(0, 0, 0))

 _camera.position.set(0, 300, 600); // 1 - x为0

 _camera.position.set(500, 0, 600); // 2 - y为0

 _camera.position.set(500, 300, 0); // 3 - z为0

很清楚的看到position决定了我们视野的出发点,但是镜头指向的方向是不变的。

下面我们将position固定,改变相机观察的方向:

_camera = new OrthographicCamera(-window.innerWidth / 2, window.innerWidth / 2, window.innerHeight / 2, -window.innerHeight / 2, 0.1, 1000);
_camera.position.set(500, 300, 600); 

_camera.lookAt(new THREE.Vector3(0, 0, 0)) // 1 - 视野指向原点

_camera.lookAt(new THREE.Vector3(200, 0, 0)) // 2 - 视野偏向x轴

可见:我们视野的出发点是相同的,但是视野看向的方向发生了改变。

#2.4.4 两种相机对比

好,有了上面的基础,我们再来写两个例子看一看两个相机的视角对比,为了方便观看,我们创建两个位置不同的几何体:

var geometry = new THREE.BoxGeometry(200, 100, 100);
var material = new THREE.MeshStandardMaterial({ color: 0x645d50 });
var mesh = new THREE.Mesh(geometry, material);
_scene.add(mesh);

var geometry = new THREE.SphereGeometry(50, 100, 100);
var ball = new THREE.Mesh(geometry, material);
ball.position.set(200, 0, -200);
_scene.add(ball);

正交投影相机视野:

_camera = new OrthographicCamera(-window.innerWidth / 2, window.innerWidth / 2, window.innerHeight / 2, -window.innerHeight / 2, 0.1, 1000);
_camera.position.set(0, 300, 600);
_camera.lookAt(new THREE.Vector3(0, 0, 0))

透视相机视野:

_camera = new PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1100);
_camera.position.set(0, 300, 600);
_camera.lookAt(new THREE.Vector3(0, 0, 0))

可见,这印证了我们上面关于两种相机的理论

#2.5 渲染器

上面我们创建了场景、元素和相机,下面我们要告诉浏览器将这些东西渲染到浏览器上。

Three.js也为我们提供了几种不同的渲染器,这里我们主要看WebGL渲染器(WebGLRenderer)。顾名思义:WebGL渲染器使用WebGL来绘制场景,其够利用GPU硬件加速从而提高渲染性能。

_renderer = new THREE.WebGLRenderer();

你需要将你使用Three.js绘制的元素添加到浏览器上,这个过程需要一个载体,上面我们介绍,这个载体就是Canvas,你可以通过_renderer.domElement获取到这个Canvas,并将它给定到真实DOM中。

 _container = document.getElementById('conianer');
 _container.appendChild(_renderer.domElement);

使用setSize函数设定你要渲染的范围,实际上它改变的就是上面Canvas的范围:

_renderer.setSize(window.innerWidth, window.innerHeight);

现在,你已经指定了一个渲染的载体和载体的范围,你可以通过render函数渲染上面指定的场景和相机:

_renderer.render(_scene, _camera);

实际上,你如果依次执行上面的代码,可能屏幕上还是黑漆漆的一片,并没有任何元素渲染出来。

这是因为上面你要渲染的元素可能并未被加载完,你就执行了渲染,并且只执行了一次,这时我们需要一种方法,让场景和相机进行实时渲染,我们需要用到下面的方法:

#2.6 requestAnimationFrame

window.requestAnimationFrame()告诉浏览器——你希望执行一个动画,并且要求浏览器在下次重绘之前调用指定的回调函数更新动画。

该方法需要传入一个回调函数作为参数,该回调函数会在浏览器下一次重绘之前执行。

window.requestAnimationFrame(callback);

若你想在浏览器下次重绘之前继续更新下一帧动画,那么回调函数自身必须再次调用window.requestAnimationFrame()。

使用者韩函数就意味着,你可以在requestAnimationFrame不停的执行绘制操作,浏览器就实时的知道它需要渲染的内容。

当然,某些时候你已经不需要实时绘制了,你也可以使用cancelAnimationFrame立即停止这个绘制:

window.cancelAnimationFrame(myReq);

来看一个简单的例子:

        var i = 0;
        var animateName;
        animate();
        function animate() {
            animateName = requestAnimationFrame(animate);
            console.log(i++);
            if (i > 100) {
                cancelAnimationFrame(animateName);
            }
        }

来看一下执行效果:

我们使用requestAnimationFrame和Three.js的渲染器结合使用,这样就能实时绘制三维动画了:

        function animate() {
            requestAnimationFrame(animate);
            _renderer.render(_scene, _camera);
        }

借助上面的代码,我们可以简单实现一些动画效果:

        var y = 100;
        var option = 'down';
        function animateIn() {
            animateName = requestAnimationFrame(animateIn);
            mesh.rotateX(Math.PI / 40);
            if (option == 'up') {
                ball.position.set(200, y += 8, 0);
            } else {
                ball.position.set(200, y -= 8, 0);
            }
            if (y < 1) { option = 'up'; }
            if (y > 100) { option = 'down' }
        }

#2.7 总结

上面的知识是Three.js中最基础的知识,也是最重要的和最主干的。

这些知识能够让你在看到一个复杂的三维效果时有一定的思路,当然,要实现还需要非常多的细节。这些细节你可以去官方文档中查阅。

下面的章节即告诉你如何使用Three.js进行实战 — 实现一个360度全景插件。

这个插件包括两部分,第一部分是对全景图进行预览。

第二部分是对全景图的标记进行配置,并关联预览的坐标。

我们首先来看看全景预览部分。

文中如有错误,欢迎在评论区指正,如果这篇文章帮助到了你,欢迎点赞和关注。


原地址:https://github.com/ConardLi/tpanorama

相关推荐

JPA实体类注解,看这篇就全会了

基本注解@Entity标注于实体类声明语句之前,指出该Java类为实体类,将映射到指定的数据库表。name(可选):实体名称。缺省为实体类的非限定名称。该名称用于引用查询中的实体。不与@Tab...

Dify教程02 - Dify+Deepseek零代码赋能,普通人也能开发AI应用

开始今天的教程之前,先解决昨天遇到的一个问题,docker安装Dify的时候有个报错,进入Dify面板的时候会出现“InternalServerError”的提示,log日志报错:S3_USE_A...

用离散标记重塑人体姿态:VQ-VAE实现关键点组合关系编码

在人体姿态估计领域,传统方法通常将关键点作为基本处理单元,这些关键点在人体骨架结构上代表关节位置(如肘部、膝盖和头部)的空间坐标。现有模型对这些关键点的预测主要采用两种范式:直接通过坐标回归或间接通过...

B 客户端流RPC (clientstream Client Stream)

客户端编写一系列消息并将其发送到服务器,同样使用提供的流。一旦客户端写完消息,它就等待服务器读取消息并返回响应gRPC再次保证了单个RPC调用中的消息排序在客户端流RPC模式中,客户端会发送多个请...

我的模型我做主02——训练自己的大模型:简易入门指南

模型训练往往需要较高的配置,为了满足友友们的好奇心,这里我们不要内存,不要gpu,用最简单的方式,让大家感受一下什么是模型训练。基于你的硬件配置,我们可以设计一个完全在CPU上运行的简易模型训练方案。...

开源项目MessageNest打造个性化消息推送平台多种通知方式

今天介绍一个开源项目,MessageNest-可以打造个性化消息推送平台,整合邮件、钉钉、企业微信等多种通知方式。定制你的消息,让通知方式更灵活多样。开源地址:https://github.c...

使用投机规则API加快页面加载速度

当今的网络用户要求快速导航,从一个页面移动到另一个页面时应尽量减少延迟。投机规则应用程序接口(SpeculationRulesAPI)的出现改变了网络应用程序接口(WebAPI)领域的游戏规则。...

JSONP安全攻防技术

关于JSONPJSONP全称是JSONwithPadding,是基于JSON格式的为解决跨域请求资源而产生的解决方案。它的基本原理是利用HTML的元素标签,远程调用JSON文件来实现数据传递。如果...

大数据Doris(六):编译 Doris遇到的问题

编译Doris遇到的问题一、js_generator.cc:(.text+0xfc3c):undefinedreferenceto`well_known_types_js’查找Doris...

网页内嵌PDF获取的办法

最近女王大人为了通过某认证考试,交了2000RMB,官方居然没有给线下教材资料,直接给的是在线教材,教材是PDF的但是是内嵌在网页内,可惜却没有给具体的PDF地址,无法下载,看到女王大人一点点的截图保...

印度女孩被邻居家客人性骚扰,父亲上门警告,反被围殴致死

微信的规则进行了调整希望大家看完故事多点“在看”,喜欢的话也点个分享和赞这样事儿君的推送才能继续出现在你的订阅列表里才能继续跟大家分享每个开怀大笑或拍案惊奇的好故事啦~话说只要稍微关注新闻的人,应该...

下周重要财经数据日程一览 (1229-0103)

下周焦点全球制造业PMI美国消费者信心指数美国首申失业救济人数值得注意的是,下周一希腊还将举行第三轮总统选举需要谷歌日历同步及部分智能手机(安卓,iPhone)同步日历功能的朋友请点击此链接,数据公布...

PyTorch 深度学习实战(38):注意力机制全面解析

在上一篇文章中,我们探讨了分布式训练实战。本文将深入解析注意力机制的完整发展历程,从最初的Seq2Seq模型到革命性的Transformer架构。我们将使用PyTorch实现2个关键阶段的注意力机制变...

聊聊Spring AI的EmbeddingModel

序本文主要研究一下SpringAI的EmbeddingModelEmbeddingModelspring-ai-core/src/main/java/org/springframework/ai/e...

前端分享-少年了解过iframe么

iframe就像是HTML的「内嵌画布」,允许在页面中加载独立网页,如同在画布上叠加另一幅动态画卷。核心特性包括:独立上下文:每个iframe都拥有独立的DOM/CSS/JS环境(类似浏...