聊聊Spring AI的EmbeddingModel
zhezhongyun 2025-04-29 06:49 56 浏览
序
本文主要研究一下Spring AI的EmbeddingModel
EmbeddingModel
spring-ai-core/src/main/java/org/springframework/ai/embedding/EmbeddingModel.java
public interface EmbeddingModel extends Model<EmbeddingRequest, EmbeddingResponse> {
@Override
EmbeddingResponse call(EmbeddingRequest request);
/**
* Embeds the given text into a vector.
* @param text the text to embed.
* @return the embedded vector.
*/
default float[] embed(String text) {
Assert.notNull(text, "Text must not be null");
List<float[]> response = this.embed(List.of(text));
return response.iterator().next();
}
/**
* Embeds the given document's content into a vector.
* @param document the document to embed.
* @return the embedded vector.
*/
float[] embed(Document document);
/**
* Embeds a batch of texts into vectors.
* @param texts list of texts to embed.
* @return list of embedded vectors.
*/
default List<float[]> embed(List<String> texts) {
Assert.notNull(texts, "Texts must not be null");
return this.call(new EmbeddingRequest(texts, EmbeddingOptionsBuilder.builder().build()))
.getResults()
.stream()
.map(Embedding::getOutput)
.toList();
}
/**
* Embeds a batch of {@link Document}s into vectors based on a
* {@link BatchingStrategy}.
* @param documents list of {@link Document}s.
* @param options {@link EmbeddingOptions}.
* @param batchingStrategy {@link BatchingStrategy}.
* @return a list of float[] that represents the vectors for the incoming
* {@link Document}s. The returned list is expected to be in the same order of the
* {@link Document} list.
*/
default List<float[]> embed(List<Document> documents, EmbeddingOptions options, BatchingStrategy batchingStrategy) {
Assert.notNull(documents, "Documents must not be null");
List<float[]> embeddings = new ArrayList<>(documents.size());
List<List<Document>> batch = batchingStrategy.batch(documents);
for (List<Document> subBatch : batch) {
List<String> texts = subBatch.stream().map(Document::getText).toList();
EmbeddingRequest request = new EmbeddingRequest(texts, options);
EmbeddingResponse response = this.call(request);
for (int i = 0; i < subBatch.size(); i++) {
embeddings.add(response.getResults().get(i).getOutput());
}
}
Assert.isTrue(embeddings.size() == documents.size(),
"Embeddings must have the same number as that of the documents");
return embeddings;
}
/**
* Embeds a batch of texts into vectors and returns the {@link EmbeddingResponse}.
* @param texts list of texts to embed.
* @return the embedding response.
*/
default EmbeddingResponse embedForResponse(List<String> texts) {
Assert.notNull(texts, "Texts must not be null");
return this.call(new EmbeddingRequest(texts, EmbeddingOptionsBuilder.builder().build()));
}
/**
* Get the number of dimensions of the embedded vectors. Note that by default, this
* method will call the remote Embedding endpoint to get the dimensions of the
* embedded vectors. If the dimensions are known ahead of time, it is recommended to
* override this method.
* @return the number of dimensions of the embedded vectors.
*/
default int dimensions() {
return embed("Test String").length;
}
}
EmbeddingModel继承了Model接口,其入参类型为EmbeddingRequest,返回类型为EmbeddingResponse,它定义了call、embed接口,提供了embed、embedForResponse、dimensions的默认实现
EmbeddingRequest
spring-ai-core/src/main/java/org/springframework/ai/embedding/EmbeddingRequest.java
public class EmbeddingRequest implements ModelRequest<List<String>> {
private final List<String> inputs;
private final EmbeddingOptions options;
public EmbeddingRequest(List<String> inputs, EmbeddingOptions options) {
this.inputs = inputs;
this.options = options;
}
@Override
public List<String> getInstructions() {
return this.inputs;
}
@Override
public EmbeddingOptions getOptions() {
return this.options;
}
}
EmbeddingRequest实现了ModelRequest接口,其getInstructions返回的是List<String>
EmbeddingResponse
spring-ai-core/src/main/java/org/springframework/ai/embedding/EmbeddingResponse.java
public class EmbeddingResponse implements ModelResponse<Embedding> {
/**
* Embedding data.
*/
private final List<Embedding> embeddings;
/**
* Embedding metadata.
*/
private final EmbeddingResponseMetadata metadata;
/**
* Creates a new {@link EmbeddingResponse} instance with empty metadata.
* @param embeddings the embedding data.
*/
public EmbeddingResponse(List<Embedding> embeddings) {
this(embeddings, new EmbeddingResponseMetadata());
}
/**
* Creates a new {@link EmbeddingResponse} instance.
* @param embeddings the embedding data.
* @param metadata the embedding metadata.
*/
public EmbeddingResponse(List<Embedding> embeddings, EmbeddingResponseMetadata metadata) {
this.embeddings = embeddings;
this.metadata = metadata;
}
/**
* @return Get the embedding metadata.
*/
public EmbeddingResponseMetadata getMetadata() {
return this.metadata;
}
@Override
public Embedding getResult() {
Assert.notEmpty(this.embeddings, "No embedding data available.");
return this.embeddings.get(0);
}
/**
* @return Get the embedding data.
*/
@Override
public List<Embedding> getResults() {
return this.embeddings;
}
//......
}
EmbeddingResponse实现了ModelResponse接口,其result为Embedding类型
AbstractEmbeddingModel
spring-ai-core/src/main/java/org/springframework/ai/embedding/AbstractEmbeddingModel.java
public abstract class AbstractEmbeddingModel implements EmbeddingModel {
private static final Map<String, Integer> KNOWN_EMBEDDING_DIMENSIONS = loadKnownModelDimensions();
/**
* Default constructor.
*/
public AbstractEmbeddingModel() {
}
/**
* Cached embedding dimensions.
*/
protected final AtomicInteger embeddingDimensions = new AtomicInteger(-1);
/**
* Return the dimension of the requested embedding generative name. If the generative
* name is unknown uses the EmbeddingModel to perform a dummy EmbeddingModel#embed and
* count the response dimensions.
* @param embeddingModel Fall-back client to determine, empirically the dimensions.
* @param modelName Embedding generative name to retrieve the dimensions for.
* @param dummyContent Dummy content to use for the empirical dimension calculation.
* @return Returns the embedding dimensions for the modelName.
*/
public static int dimensions(EmbeddingModel embeddingModel, String modelName, String dummyContent) {
if (KNOWN_EMBEDDING_DIMENSIONS.containsKey(modelName)) {
// Retrieve the dimension from a pre-configured file.
return KNOWN_EMBEDDING_DIMENSIONS.get(modelName);
}
else {
// Determine the dimensions empirically.
// Generate an embedding and count the dimension size;
return embeddingModel.embed(dummyContent).length;
}
}
private static Map<String, Integer> loadKnownModelDimensions() {
try {
Properties properties = new Properties();
properties.load(new DefaultResourceLoader()
.getResource("classpath:/embedding/embedding-model-dimensions.properties")
.getInputStream());
return properties.entrySet()
.stream()
.collect(Collectors.toMap(e -> e.getKey().toString(), e -> Integer.parseInt(e.getValue().toString())));
}
catch (IOException e) {
throw new RuntimeException(e);
}
}
@Override
public int dimensions() {
if (this.embeddingDimensions.get() < 0) {
this.embeddingDimensions.set(dimensions(this, "Test", "Hello World"));
}
return this.embeddingDimensions.get();
}
}
AbstractEmbeddingModel实现了EmbeddingModel接口定义的dimensions方法,它在不同模块有不同的实现子类,比如spring-ai-openai的OpenAiEmbeddingModel、spring-ai-ollama的OllamaEmbeddingModel、spring-ai-minimax的MiniMaxEmbeddingModel等
OllamaEmbeddingAutoConfiguration
org/springframework/ai/model/ollama/autoconfigure/OllamaEmbeddingAutoConfiguration.java
@AutoConfiguration(after = RestClientAutoConfiguration.class)
@ConditionalOnClass(OllamaEmbeddingModel.class)
@ConditionalOnProperty(name = SpringAIModelProperties.EMBEDDING_MODEL, havingValue = SpringAIModels.OLLAMA,
matchIfMissing = true)
@EnableConfigurationProperties({ OllamaEmbeddingProperties.class, OllamaInitializationProperties.class })
@ImportAutoConfiguration(classes = { OllamaApiAutoConfiguration.class, RestClientAutoConfiguration.class,
WebClientAutoConfiguration.class })
public class OllamaEmbeddingAutoConfiguration {
@Bean
@ConditionalOnMissingBean
public OllamaEmbeddingModel ollamaEmbeddingModel(OllamaApi ollamaApi, OllamaEmbeddingProperties properties,
OllamaInitializationProperties initProperties, ObjectProvider<ObservationRegistry> observationRegistry,
ObjectProvider<EmbeddingModelObservationConvention> observationConvention) {
var embeddingModelPullStrategy = initProperties.getEmbedding().isInclude()
? initProperties.getPullModelStrategy() : PullModelStrategy.NEVER;
var embeddingModel = OllamaEmbeddingModel.builder()
.ollamaApi(ollamaApi)
.defaultOptions(properties.getOptions())
.observationRegistry(observationRegistry.getIfUnique(() -> ObservationRegistry.NOOP))
.modelManagementOptions(new ModelManagementOptions(embeddingModelPullStrategy,
initProperties.getEmbedding().getAdditionalModels(), initProperties.getTimeout(),
initProperties.getMaxRetries()))
.build();
observationConvention.ifAvailable(embeddingModel::setObservationConvention);
return embeddingModel;
}
}
OllamaEmbeddingAutoConfiguration在spring.ai.model.embedding为ollama时启用,它自动配置了OllamaEmbeddingModel
OllamaEmbeddingProperties
org/springframework/ai/model/ollama/autoconfigure/OllamaEmbeddingProperties.java
@ConfigurationProperties(OllamaEmbeddingProperties.CONFIG_PREFIX)
public class OllamaEmbeddingProperties {
public static final String CONFIG_PREFIX = "spring.ai.ollama.embedding";
/**
* Client lever Ollama options. Use this property to configure generative temperature,
* topK and topP and alike parameters. The null values are ignored defaulting to the
* generative's defaults.
*/
@NestedConfigurationProperty
private OllamaOptions options = OllamaOptions.builder().model(OllamaModel.MXBAI_EMBED_LARGE.id()).build();
public String getModel() {
return this.options.getModel();
}
public void setModel(String model) {
this.options.setModel(model);
}
public OllamaOptions getOptions() {
return this.options;
}
}
OllamaEmbeddingProperties主要是提供了OllamaOptions属性配置,具体可以参考
https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md
OllamaInitializationProperties
org/springframework/ai/model/ollama/autoconfigure/OllamaInitializationProperties.java
@ConfigurationProperties(OllamaInitializationProperties.CONFIG_PREFIX)
public class OllamaInitializationProperties {
public static final String CONFIG_PREFIX = "spring.ai.ollama.init";
/**
* Chat models initialization settings.
*/
private final ModelTypeInit chat = new ModelTypeInit();
/**
* Embedding models initialization settings.
*/
private final ModelTypeInit embedding = new ModelTypeInit();
/**
* Whether to pull models at startup-time and how.
*/
private PullModelStrategy pullModelStrategy = PullModelStrategy.NEVER;
/**
* How long to wait for a model to be pulled.
*/
private Duration timeout = Duration.ofMinutes(5);
/**
* Maximum number of retries for the model pull operation.
*/
private int maxRetries = 0;
public PullModelStrategy getPullModelStrategy() {
return this.pullModelStrategy;
}
public void setPullModelStrategy(PullModelStrategy pullModelStrategy) {
this.pullModelStrategy = pullModelStrategy;
}
public ModelTypeInit getChat() {
return this.chat;
}
public ModelTypeInit getEmbedding() {
return this.embedding;
}
public Duration getTimeout() {
return this.timeout;
}
public void setTimeout(Duration timeout) {
this.timeout = timeout;
}
public int getMaxRetries() {
return this.maxRetries;
}
public void setMaxRetries(int maxRetries) {
this.maxRetries = maxRetries;
}
public static class ModelTypeInit {
/**
* Include this type of models in the initialization task.
*/
private boolean include = true;
/**
* Additional models to initialize besides the ones configured via default
* properties.
*/
private List<String> additionalModels = List.of();
public boolean isInclude() {
return this.include;
}
public void setInclude(boolean include) {
this.include = include;
}
public List<String> getAdditionalModels() {
return this.additionalModels;
}
public void setAdditionalModels(List<String> additionalModels) {
this.additionalModels = additionalModels;
}
}
}
OllamaInitializationProperties提供了spring.ai.ollama.init即ollama初始化的相关配置,其中ModelTypeInit可以指定初始化哪些额外的model
示例
pom.xml
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-ollama</artifactId>
</dependency>
配置
spring:
ai:
model:
embedding: ollama
ollama:
init:
timeout: 5m
max-retries: 0
embedding:
include: true
additional-models: []
base-url: http://localhost:11434
embedding:
enabled: true
options:
model: bge-m3:latest
truncate: true
example
@Test
public void testCall() {
EmbeddingRequest request = new EmbeddingRequest(List.of("Hello World", "World is big and salvation is near"),
OllamaOptions.builder()
.model("bge-m3:latest")
.truncate(false)
.build());
EmbeddingResponse embeddingResponse = embeddingModel.call(request);
log.info("resp:{}", JSON.toJSONString(embeddingResponse));
}
小结
Spring AI定义了EmbeddingModel接口,它继承了Model接口,其入参类型为EmbeddingRequest,返回类型为EmbeddingResponse,它定义了call、embed接口,提供了embed、embedForResponse、dimensions的默认实现;AbstractEmbeddingModel实现了EmbeddingModel接口定义的dimensions方法,它在不同模块有不同的实现子类,比如spring-ai-openai的OpenAiEmbeddingModel、spring-ai-ollama的OllamaEmbeddingModel、spring-ai-minimax的MiniMaxEmbeddingModel等;
OllamaEmbeddingAutoConfiguration在spring.ai.model.embedding为ollama时启用,它自动配置了OllamaEmbeddingModel。
doc
- embeddings
- ollama-embeddings
相关推荐
- Python入门学习记录之一:变量_python怎么用变量
-
写这个,主要是对自己学习python知识的一个总结,也是加深自己的印象。变量(英文:variable),也叫标识符。在python中,变量的命名规则有以下三点:>变量名只能包含字母、数字和下划线...
- python变量命名规则——来自小白的总结
-
python是一个动态编译类编程语言,所以程序在运行前不需要如C语言的先行编译动作,因此也只有在程序运行过程中才能发现程序的问题。基于此,python的变量就有一定的命名规范。python作为当前热门...
- Python入门学习教程:第 2 章 变量与数据类型
-
2.1什么是变量?在编程中,变量就像一个存放数据的容器,它可以存储各种信息,并且这些信息可以被读取和修改。想象一下,变量就如同我们生活中的盒子,你可以把东西放进去,也可以随时拿出来看看,甚至可以换成...
- 绘制学术论文中的“三线表”具体指导
-
在科研过程中,大家用到最多的可能就是“三线表”。“三线表”,一般主要由三条横线构成,当然在变量名栏里也可以拆分单元格,出现更多的线。更重要的是,“三线表”也是一种数据记录规范,以“三线表”形式记录的数...
- Python基础语法知识--变量和数据类型
-
学习Python中的变量和数据类型至关重要,因为它们构成了Python编程的基石。以下是帮助您了解Python中的变量和数据类型的分步指南:1.变量:变量在Python中用于存储数据值。它们充...
- 一文搞懂 Python 中的所有标点符号
-
反引号`无任何作用。传说Python3中它被移除是因为和单引号字符'太相似。波浪号~(按位取反符号)~被称为取反或补码运算符。它放在我们想要取反的对象前面。如果放在一个整数n...
- Python变量类型和运算符_python中变量的含义
-
别再被小名词坑哭了:Python新手常犯的那些隐蔽错误,我用同事的真实bug拆给你看我记得有一次和同事张姐一起追查一个看似随机崩溃的脚本,最后发现罪魁祸首竟然是她把变量命名成了list。说实话...
- 从零开始:深入剖析 Spring Boot3 中配置文件的加载顺序
-
在当今的互联网软件开发领域,SpringBoot无疑是最为热门和广泛应用的框架之一。它以其强大的功能、便捷的开发体验,极大地提升了开发效率,成为众多开发者构建Web应用程序的首选。而在Spr...
- Python中下划线 ‘_’ 的用法,你知道几种
-
Python中下划线()是一个有特殊含义和用途的符号,它可以用来表示以下几种情况:1在解释器中,下划线(_)表示上一个表达式的值,可以用来进行快速计算或测试。例如:>>>2+...
- 解锁Shell编程:变量_shell $变量
-
引言:开启Shell编程大门Shell作为用户与Linux内核之间的桥梁,为我们提供了强大的命令行交互方式。它不仅能执行简单的文件操作、进程管理,还能通过编写脚本实现复杂的自动化任务。无论是...
- 一文学会Python的变量命名规则!_python的变量命名有哪些要求
-
目录1.变量的命名原则3.内置函数尽量不要做变量4.删除变量和垃圾回收机制5.结语1.变量的命名原则①由英文字母、_(下划线)、或中文开头②变量名称只能由英文字母、数字、下画线或中文字所组成。③英文字...
- 更可靠的Rust-语法篇-区分语句/表达式,略览if/loop/while/for
-
src/main.rs://函数定义fnadd(a:i32,b:i32)->i32{a+b//末尾表达式}fnmain(){leta:i3...
- C++第五课:变量的命名规则_c++中变量的命名规则
-
变量的命名不是想怎么起就怎么起的,而是有一套固定的规则的。具体规则:1.名字要合法:变量名必须是由字母、数字或下划线组成。例如:a,a1,a_1。2.开头不能是数字。例如:可以a1,但不能起1a。3....
- Rust编程-核心篇-不安全编程_rust安全性
-
Unsafe的必要性Rust的所有权系统和类型系统为我们提供了强大的安全保障,但在某些情况下,我们需要突破这些限制来:与C代码交互实现底层系统编程优化性能关键代码实现某些编译器无法验证的安全操作Rus...
- 探秘 Python 内存管理:背后的神奇机制
-
在编程的世界里,内存管理就如同幕后的精密操控者,确保程序的高效运行。Python作为一种广泛使用的编程语言,其内存管理机制既巧妙又复杂,为开发者们提供了便利的同时,也展现了强大的底层控制能力。一、P...
- 一周热门
- 最近发表
- 标签列表
-
- HTML 教程 (33)
- HTML 简介 (35)
- HTML 实例/测验 (32)
- HTML 测验 (32)
- JavaScript 和 HTML DOM 参考手册 (32)
- HTML 拓展阅读 (30)
- HTML文本框样式 (31)
- HTML滚动条样式 (34)
- HTML5 浏览器支持 (33)
- HTML5 新元素 (33)
- HTML5 WebSocket (30)
- HTML5 代码规范 (32)
- HTML5 标签 (717)
- HTML5 标签 (已废弃) (75)
- HTML5电子书 (32)
- HTML5开发工具 (34)
- HTML5小游戏源码 (34)
- HTML5模板下载 (30)
- HTTP 状态消息 (33)
- HTTP 方法:GET 对比 POST (33)
- 键盘快捷键 (35)
- 标签 (226)
- opacity 属性 (32)
- transition 属性 (33)
- 1-1. 变量声明 (31)
