聊聊Spring AI的EmbeddingModel
zhezhongyun 2025-04-29 06:49 49 浏览
序
本文主要研究一下Spring AI的EmbeddingModel
EmbeddingModel
spring-ai-core/src/main/java/org/springframework/ai/embedding/EmbeddingModel.java
public interface EmbeddingModel extends Model<EmbeddingRequest, EmbeddingResponse> {
@Override
EmbeddingResponse call(EmbeddingRequest request);
/**
* Embeds the given text into a vector.
* @param text the text to embed.
* @return the embedded vector.
*/
default float[] embed(String text) {
Assert.notNull(text, "Text must not be null");
List<float[]> response = this.embed(List.of(text));
return response.iterator().next();
}
/**
* Embeds the given document's content into a vector.
* @param document the document to embed.
* @return the embedded vector.
*/
float[] embed(Document document);
/**
* Embeds a batch of texts into vectors.
* @param texts list of texts to embed.
* @return list of embedded vectors.
*/
default List<float[]> embed(List<String> texts) {
Assert.notNull(texts, "Texts must not be null");
return this.call(new EmbeddingRequest(texts, EmbeddingOptionsBuilder.builder().build()))
.getResults()
.stream()
.map(Embedding::getOutput)
.toList();
}
/**
* Embeds a batch of {@link Document}s into vectors based on a
* {@link BatchingStrategy}.
* @param documents list of {@link Document}s.
* @param options {@link EmbeddingOptions}.
* @param batchingStrategy {@link BatchingStrategy}.
* @return a list of float[] that represents the vectors for the incoming
* {@link Document}s. The returned list is expected to be in the same order of the
* {@link Document} list.
*/
default List<float[]> embed(List<Document> documents, EmbeddingOptions options, BatchingStrategy batchingStrategy) {
Assert.notNull(documents, "Documents must not be null");
List<float[]> embeddings = new ArrayList<>(documents.size());
List<List<Document>> batch = batchingStrategy.batch(documents);
for (List<Document> subBatch : batch) {
List<String> texts = subBatch.stream().map(Document::getText).toList();
EmbeddingRequest request = new EmbeddingRequest(texts, options);
EmbeddingResponse response = this.call(request);
for (int i = 0; i < subBatch.size(); i++) {
embeddings.add(response.getResults().get(i).getOutput());
}
}
Assert.isTrue(embeddings.size() == documents.size(),
"Embeddings must have the same number as that of the documents");
return embeddings;
}
/**
* Embeds a batch of texts into vectors and returns the {@link EmbeddingResponse}.
* @param texts list of texts to embed.
* @return the embedding response.
*/
default EmbeddingResponse embedForResponse(List<String> texts) {
Assert.notNull(texts, "Texts must not be null");
return this.call(new EmbeddingRequest(texts, EmbeddingOptionsBuilder.builder().build()));
}
/**
* Get the number of dimensions of the embedded vectors. Note that by default, this
* method will call the remote Embedding endpoint to get the dimensions of the
* embedded vectors. If the dimensions are known ahead of time, it is recommended to
* override this method.
* @return the number of dimensions of the embedded vectors.
*/
default int dimensions() {
return embed("Test String").length;
}
}
EmbeddingModel继承了Model接口,其入参类型为EmbeddingRequest,返回类型为EmbeddingResponse,它定义了call、embed接口,提供了embed、embedForResponse、dimensions的默认实现
EmbeddingRequest
spring-ai-core/src/main/java/org/springframework/ai/embedding/EmbeddingRequest.java
public class EmbeddingRequest implements ModelRequest<List<String>> {
private final List<String> inputs;
private final EmbeddingOptions options;
public EmbeddingRequest(List<String> inputs, EmbeddingOptions options) {
this.inputs = inputs;
this.options = options;
}
@Override
public List<String> getInstructions() {
return this.inputs;
}
@Override
public EmbeddingOptions getOptions() {
return this.options;
}
}
EmbeddingRequest实现了ModelRequest接口,其getInstructions返回的是List<String>
EmbeddingResponse
spring-ai-core/src/main/java/org/springframework/ai/embedding/EmbeddingResponse.java
public class EmbeddingResponse implements ModelResponse<Embedding> {
/**
* Embedding data.
*/
private final List<Embedding> embeddings;
/**
* Embedding metadata.
*/
private final EmbeddingResponseMetadata metadata;
/**
* Creates a new {@link EmbeddingResponse} instance with empty metadata.
* @param embeddings the embedding data.
*/
public EmbeddingResponse(List<Embedding> embeddings) {
this(embeddings, new EmbeddingResponseMetadata());
}
/**
* Creates a new {@link EmbeddingResponse} instance.
* @param embeddings the embedding data.
* @param metadata the embedding metadata.
*/
public EmbeddingResponse(List<Embedding> embeddings, EmbeddingResponseMetadata metadata) {
this.embeddings = embeddings;
this.metadata = metadata;
}
/**
* @return Get the embedding metadata.
*/
public EmbeddingResponseMetadata getMetadata() {
return this.metadata;
}
@Override
public Embedding getResult() {
Assert.notEmpty(this.embeddings, "No embedding data available.");
return this.embeddings.get(0);
}
/**
* @return Get the embedding data.
*/
@Override
public List<Embedding> getResults() {
return this.embeddings;
}
//......
}
EmbeddingResponse实现了ModelResponse接口,其result为Embedding类型
AbstractEmbeddingModel
spring-ai-core/src/main/java/org/springframework/ai/embedding/AbstractEmbeddingModel.java
public abstract class AbstractEmbeddingModel implements EmbeddingModel {
private static final Map<String, Integer> KNOWN_EMBEDDING_DIMENSIONS = loadKnownModelDimensions();
/**
* Default constructor.
*/
public AbstractEmbeddingModel() {
}
/**
* Cached embedding dimensions.
*/
protected final AtomicInteger embeddingDimensions = new AtomicInteger(-1);
/**
* Return the dimension of the requested embedding generative name. If the generative
* name is unknown uses the EmbeddingModel to perform a dummy EmbeddingModel#embed and
* count the response dimensions.
* @param embeddingModel Fall-back client to determine, empirically the dimensions.
* @param modelName Embedding generative name to retrieve the dimensions for.
* @param dummyContent Dummy content to use for the empirical dimension calculation.
* @return Returns the embedding dimensions for the modelName.
*/
public static int dimensions(EmbeddingModel embeddingModel, String modelName, String dummyContent) {
if (KNOWN_EMBEDDING_DIMENSIONS.containsKey(modelName)) {
// Retrieve the dimension from a pre-configured file.
return KNOWN_EMBEDDING_DIMENSIONS.get(modelName);
}
else {
// Determine the dimensions empirically.
// Generate an embedding and count the dimension size;
return embeddingModel.embed(dummyContent).length;
}
}
private static Map<String, Integer> loadKnownModelDimensions() {
try {
Properties properties = new Properties();
properties.load(new DefaultResourceLoader()
.getResource("classpath:/embedding/embedding-model-dimensions.properties")
.getInputStream());
return properties.entrySet()
.stream()
.collect(Collectors.toMap(e -> e.getKey().toString(), e -> Integer.parseInt(e.getValue().toString())));
}
catch (IOException e) {
throw new RuntimeException(e);
}
}
@Override
public int dimensions() {
if (this.embeddingDimensions.get() < 0) {
this.embeddingDimensions.set(dimensions(this, "Test", "Hello World"));
}
return this.embeddingDimensions.get();
}
}
AbstractEmbeddingModel实现了EmbeddingModel接口定义的dimensions方法,它在不同模块有不同的实现子类,比如spring-ai-openai的OpenAiEmbeddingModel、spring-ai-ollama的OllamaEmbeddingModel、spring-ai-minimax的MiniMaxEmbeddingModel等
OllamaEmbeddingAutoConfiguration
org/springframework/ai/model/ollama/autoconfigure/OllamaEmbeddingAutoConfiguration.java
@AutoConfiguration(after = RestClientAutoConfiguration.class)
@ConditionalOnClass(OllamaEmbeddingModel.class)
@ConditionalOnProperty(name = SpringAIModelProperties.EMBEDDING_MODEL, havingValue = SpringAIModels.OLLAMA,
matchIfMissing = true)
@EnableConfigurationProperties({ OllamaEmbeddingProperties.class, OllamaInitializationProperties.class })
@ImportAutoConfiguration(classes = { OllamaApiAutoConfiguration.class, RestClientAutoConfiguration.class,
WebClientAutoConfiguration.class })
public class OllamaEmbeddingAutoConfiguration {
@Bean
@ConditionalOnMissingBean
public OllamaEmbeddingModel ollamaEmbeddingModel(OllamaApi ollamaApi, OllamaEmbeddingProperties properties,
OllamaInitializationProperties initProperties, ObjectProvider<ObservationRegistry> observationRegistry,
ObjectProvider<EmbeddingModelObservationConvention> observationConvention) {
var embeddingModelPullStrategy = initProperties.getEmbedding().isInclude()
? initProperties.getPullModelStrategy() : PullModelStrategy.NEVER;
var embeddingModel = OllamaEmbeddingModel.builder()
.ollamaApi(ollamaApi)
.defaultOptions(properties.getOptions())
.observationRegistry(observationRegistry.getIfUnique(() -> ObservationRegistry.NOOP))
.modelManagementOptions(new ModelManagementOptions(embeddingModelPullStrategy,
initProperties.getEmbedding().getAdditionalModels(), initProperties.getTimeout(),
initProperties.getMaxRetries()))
.build();
observationConvention.ifAvailable(embeddingModel::setObservationConvention);
return embeddingModel;
}
}
OllamaEmbeddingAutoConfiguration在spring.ai.model.embedding为ollama时启用,它自动配置了OllamaEmbeddingModel
OllamaEmbeddingProperties
org/springframework/ai/model/ollama/autoconfigure/OllamaEmbeddingProperties.java
@ConfigurationProperties(OllamaEmbeddingProperties.CONFIG_PREFIX)
public class OllamaEmbeddingProperties {
public static final String CONFIG_PREFIX = "spring.ai.ollama.embedding";
/**
* Client lever Ollama options. Use this property to configure generative temperature,
* topK and topP and alike parameters. The null values are ignored defaulting to the
* generative's defaults.
*/
@NestedConfigurationProperty
private OllamaOptions options = OllamaOptions.builder().model(OllamaModel.MXBAI_EMBED_LARGE.id()).build();
public String getModel() {
return this.options.getModel();
}
public void setModel(String model) {
this.options.setModel(model);
}
public OllamaOptions getOptions() {
return this.options;
}
}
OllamaEmbeddingProperties主要是提供了OllamaOptions属性配置,具体可以参考
https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md
OllamaInitializationProperties
org/springframework/ai/model/ollama/autoconfigure/OllamaInitializationProperties.java
@ConfigurationProperties(OllamaInitializationProperties.CONFIG_PREFIX)
public class OllamaInitializationProperties {
public static final String CONFIG_PREFIX = "spring.ai.ollama.init";
/**
* Chat models initialization settings.
*/
private final ModelTypeInit chat = new ModelTypeInit();
/**
* Embedding models initialization settings.
*/
private final ModelTypeInit embedding = new ModelTypeInit();
/**
* Whether to pull models at startup-time and how.
*/
private PullModelStrategy pullModelStrategy = PullModelStrategy.NEVER;
/**
* How long to wait for a model to be pulled.
*/
private Duration timeout = Duration.ofMinutes(5);
/**
* Maximum number of retries for the model pull operation.
*/
private int maxRetries = 0;
public PullModelStrategy getPullModelStrategy() {
return this.pullModelStrategy;
}
public void setPullModelStrategy(PullModelStrategy pullModelStrategy) {
this.pullModelStrategy = pullModelStrategy;
}
public ModelTypeInit getChat() {
return this.chat;
}
public ModelTypeInit getEmbedding() {
return this.embedding;
}
public Duration getTimeout() {
return this.timeout;
}
public void setTimeout(Duration timeout) {
this.timeout = timeout;
}
public int getMaxRetries() {
return this.maxRetries;
}
public void setMaxRetries(int maxRetries) {
this.maxRetries = maxRetries;
}
public static class ModelTypeInit {
/**
* Include this type of models in the initialization task.
*/
private boolean include = true;
/**
* Additional models to initialize besides the ones configured via default
* properties.
*/
private List<String> additionalModels = List.of();
public boolean isInclude() {
return this.include;
}
public void setInclude(boolean include) {
this.include = include;
}
public List<String> getAdditionalModels() {
return this.additionalModels;
}
public void setAdditionalModels(List<String> additionalModels) {
this.additionalModels = additionalModels;
}
}
}
OllamaInitializationProperties提供了spring.ai.ollama.init即ollama初始化的相关配置,其中ModelTypeInit可以指定初始化哪些额外的model
示例
pom.xml
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-ollama</artifactId>
</dependency>
配置
spring:
ai:
model:
embedding: ollama
ollama:
init:
timeout: 5m
max-retries: 0
embedding:
include: true
additional-models: []
base-url: http://localhost:11434
embedding:
enabled: true
options:
model: bge-m3:latest
truncate: true
example
@Test
public void testCall() {
EmbeddingRequest request = new EmbeddingRequest(List.of("Hello World", "World is big and salvation is near"),
OllamaOptions.builder()
.model("bge-m3:latest")
.truncate(false)
.build());
EmbeddingResponse embeddingResponse = embeddingModel.call(request);
log.info("resp:{}", JSON.toJSONString(embeddingResponse));
}
小结
Spring AI定义了EmbeddingModel接口,它继承了Model接口,其入参类型为EmbeddingRequest,返回类型为EmbeddingResponse,它定义了call、embed接口,提供了embed、embedForResponse、dimensions的默认实现;AbstractEmbeddingModel实现了EmbeddingModel接口定义的dimensions方法,它在不同模块有不同的实现子类,比如spring-ai-openai的OpenAiEmbeddingModel、spring-ai-ollama的OllamaEmbeddingModel、spring-ai-minimax的MiniMaxEmbeddingModel等;
OllamaEmbeddingAutoConfiguration在spring.ai.model.embedding为ollama时启用,它自动配置了OllamaEmbeddingModel。
doc
- embeddings
- ollama-embeddings
相关推荐
- C/C++语言的引用与指针比较说明_c++语言中的引用类型与指针的不同之处
-
在C/C++编程中,引用与指针是实现数据间接访问的核心工具,二者均能优化参数传递效率、支持复杂数据操作,但在本质、语法与使用场景上存在显著差异。混淆二者易导致内存泄漏、悬空访问等严重问题。一、基础概念...
- 再也不点来点去了!用这几条命令,文件管理快10倍!(第003课)
-
大家好,今天给大家介绍如何用命令提示符(CMD)来管理你的文件!听起来可能有点高大上,但其实非常简单,而且一旦学会了,效率超高,特别适合那些喜欢快速搞定事情的朋友。那我们就从基础的操作开始,教你怎...
- C/C++逆向分析实战:变量存储与安全防护全攻略
-
在软件开发的世界里,C/C++语言因其卓越的性能和强大的功能而备受开发者青睐。然而,随着技术的不断进步,逆向工程也逐渐成为一种常见的攻击手段。今天,我们将深入探讨C/C++中不同类型的变量在逆向分析中...
- 简单的python-核心篇-命名空间与作用域
-
命名空间是变量名到对象的映射,作用域决定了变量在哪些地方可以被访问。Python使用LEGB规则来确定变量的作用域。#全局命名空间global_var="我是全局变量"de...
- Jmeter参数化:User Defined Variables-用户定义的变量
-
位置:如下图,Add--ConfigElement--UserDefinedVariables作用:定义你所需要的参数,比如IP使用:${IP}使用的场景:比如域名什么的,可以提出来参数化,以...
- PySnooper:实时看行号 / 变量值,摆脱 print 的函数调试工具
-
开篇:调试也能这么爽?你是不是和我一样,天天跟print()打交道,一行行地往代码里塞调试信息?有时候加完又删,删完又忘,简直要疯掉!要是能像Bash的set-x那样,一键打开“观察模式...
- 组态王入门之建立变量、变量连接、弹窗设计
-
一、建立变量(1)打开组态王软件,左侧找到变量的菜单(2)点击菜单(3)找到变量组,再新建一个二级变量组(4)在新建的泵站分配井阀门中建立变量因是新的PLC需要先建立一个驱动找到西门子àS7-200(...
- 为什么老外还是喜欢在官方网站上买东西?
-
今天看了一下一些品牌的官方网站,从浏览到购买支付流程都是很顺畅的,而一些国外的品牌在国内的网站好多都是引导至微信小程序或是淘宝京东上面去购买。国外的品牌官网好像都很简单,比如一些卖服装的类的,基本就是...
- 支撑京东小程序的开发框架 「Taro」,免费学习
-
转载自:性能与架构公众号Taro简介现在小程序平台太多了,例如:微信小程序QQ小程序支付宝小程序百度小程序字节跳动小程序针对他们都各自开发一套的话开发成本就太高了。如果写一套代码,就能开发出适配这么...
- 比较工具大集合_比较各种工具在编辑使用pl/sql程序过程中的优劣
-
现在各大网络平台流传着大量的文件夹和文件比较工具,其中不乏滥竽充数的,软件使用不够流畅,对比功能不够强大。很多人要么找不到合适的工具,要么在寻找过程中浪费了大量的时间,下面小编就和大家分享一些个人私藏...
- 关于前端开发的20篇文档与指南_前端开发文档怎么编写
-
相信在2015年很多这个行业的人都会有这样的两种感受:真的不知所措,这个行业到底有多少东西需要去学习;渴望更多,并迫不及待的为接下来的学习寻求一些思想方向。第一个来自于我们的个人感受,而第二个则是纯粹...
- 成为一名合格的前端架构师,前端知识技能与项目实战教学
-
一、教程描述本套前端架构师教程,大小35.94G,共有672个文件。二、教程目录01.node介绍和环境配置(共6课时)02.ES6语法(共5课时)03.node基础(共29课时)04.Express...
- 吃透 Vue 项目开发实践|16个方面深入前端工程化开发技巧【下】
-
前言前面两篇文章总结了Vue开发的大部分技巧和内容,最后一篇文章来对它进行一个收尾这篇文章我们来谈谈一些Vue理解和实践要求高一点的问题首先是生命周期这一块内容,随着实践越多它的意义越大,理解...
- 在w3cschool上学完html、css后要怎么提升
-
原标题:在w3cschool学完html,css,javascript,jquery以后,还是不会做前端怎么办?w3cschool是一个非盈利性的在线技术学习网站,提供按W3C标准编写的基础教程。完整...
- 从0到1无比流畅的React入门教程_react教程推荐
-
React是什么简介用于构建Web和原生交互界面的库React用组件创建用户界面通俗来讲:==是一个将数据渲染为HTML视图的开源JS库==其他信息Facebook开发,并且开源为什么使用R...
- 一周热门
- 最近发表
- 标签列表
-
- HTML 教程 (33)
- HTML 简介 (35)
- HTML 实例/测验 (32)
- HTML 测验 (32)
- JavaScript 和 HTML DOM 参考手册 (32)
- HTML 拓展阅读 (30)
- HTML文本框样式 (31)
- HTML滚动条样式 (34)
- HTML5 浏览器支持 (33)
- HTML5 新元素 (33)
- HTML5 WebSocket (30)
- HTML5 代码规范 (32)
- HTML5 标签 (717)
- HTML5 标签 (已废弃) (75)
- HTML5电子书 (32)
- HTML5开发工具 (34)
- HTML5小游戏源码 (34)
- HTML5模板下载 (30)
- HTTP 状态消息 (33)
- HTTP 方法:GET 对比 POST (33)
- 键盘快捷键 (35)
- 标签 (226)
- HTML button formtarget 属性 (30)
- opacity 属性 (32)
- transition 属性 (33)