用离散标记重塑人体姿态:VQ-VAE实现关键点组合关系编码
zhezhongyun 2025-04-29 06:53 50 浏览
在人体姿态估计领域,传统方法通常将关键点作为基本处理单元,这些关键点在人体骨架结构上代表关节位置(如肘部、膝盖和头部)的空间坐标。现有模型对这些关键点的预测主要采用两种范式:直接通过坐标回归或间接通过热图(heat map,即图像空间中的密集概率分布)进行估计。尽管这些方法在实际应用中取得了显著效果,但它们往往将每个关键点作为独立单元处理,未能充分利用人体骨架结构中固有的关键点间组合关系。
如果我们转换思路,将姿态表示为一组学习到的、离散的标记(token)组合,这些标记不仅仅编码原始坐标或热图信息,而是捕获关键点之间的共享模式、对称性和结构化关系,会带来怎样的优势?
受2023年发表的研究论文《Human Pose As Compositional Tokens》启发,本文构建了一个姿态重建模型,实现了上述概念。我们将详细介绍该方法第一阶段的实现过程:训练组合编码器(Compositional Encoder)、向量量化(Vector Quantization, VQ)码本和姿态解码器(Pose Decoder)——这些组件共同构成了一个用于学习姿态结构紧凑、离散表示的系统。
与传统的热图或坐标回归方法相比,基于标记的表征方法能够有效捕获关键点之间的语义和空间依赖关系。这种表征形式使模型能够更好地泛化到未见过的姿态配置,并且便于将这些离散标记整合到下游任务中,如动作识别或姿态分类。
合成火柴人数据集
为简化实验过程并专注于方法本身,我们创建了一个火柴人的合成数据集。每个火柴人实例由13个二维关键点精确定义,这些关键点包括头部、颈部、肩膀、肘部、手部、腰部、膝盖和脚部。该数据集采用即时生成方式,支持随机但符合人体结构约束的肢体配置、微小的姿态变化以及基于旋转的数据增强。
图1:火柴人示例,其中标注了关键点位置
基于组合编码的VQ-VAE
本文的核心目标是将每个姿态压缩为一组离散的标记(token),每个标记对应于从共享码本中学习的潜在表示。
图2:PCT(Pose as Compositional Tokens)架构的训练阶段 - 来源:
https://arxiv.org/abs/2303.11638
辅助模块
class MLPBlock(nn.Module):
def __init__(self, dim, inter_dim, dropout_ratio):
super().__init__()
self.ff = nn.Sequential(
nn.Linear(dim, inter_dim),
nn.GELU(),
nn.Dropout(dropout_ratio),
nn.Linear(inter_dim, dim),
nn.Dropout(dropout_ratio)
)
def forward(self, x):
return self.ff(x)
class MixerLayer(nn.Module):
def __init__(self,
hidden_dim,
hidden_inter_dim,
token_dim,
token_inter_dim,
dropout_ratio):
super().__init__()
self.layernorm1 = nn.LayerNorm(hidden_dim)
self.MLP_token = MLPBlock(token_dim, token_inter_dim, dropout_ratio)
self.layernorm2 = nn.LayerNorm(hidden_dim)
self.MLP_channel = MLPBlock(hidden_dim, hidden_inter_dim, dropout_ratio)
def forward(self, x):
y = self.layernorm1(x)
y = y.transpose(2, 1)
y = self.MLP_token(y)
y = y.transpose(2, 1)
z = self.layernorm2(x + y)
z = self.MLP_channel(z)
out = x + y + z
return outMLPMixer层是《Human Pose as Compositional Tokens》论文作者提出的用于将关键点信息融合成潜在向量的核心组件。
组合编码器
class CompositionalEncoder(nn.Module):
def __init__(self, numberOfKeypoints=11, dimensionOfKeypoints=2, linearProjectionSize=128, numberOfMixerBlocks=4, codebookTokenDimension=64, internalMixerSize=64, internalMixerTokenSize=32, mixerDropout=0.1):
super(CompositionalEncoder, self).__init__()
self.numberOfKeypoints = numberOfKeypoints # K
self.dimensionOfKeypoints = dimensionOfKeypoints # D
self.linearProjectionSize = linearProjectionSize # H
self.numberOfMixerBlocks = numberOfMixerBlocks # N
self.codebookTokenDimension = codebookTokenDimension # M
self.internalMixerSize = internalMixerSize
self.internalMixerTokenSize = internalMixerTokenSize
self.mixerDropout = mixerDropout
self.initial_linear = nn.Linear(self.dimensionOfKeypoints,
self.linearProjectionSize) # 从BxKxD投影到BxKxH
self.mixer_layers = nn.ModuleList([MixerLayer(self.linearProjectionSize,
self.internalMixerSize,
self.numberOfKeypoints,
self.internalMixerTokenSize,
self.mixerDropout) for _ in range(self.numberOfMixerBlocks)]) # BxKxH
self.mixer_layer_norm = nn.LayerNorm(self.linearProjectionSize) # BxKxH
self.token_linear = nn.Linear(self.numberOfKeypoints,
self.codebookTokenDimension) # BxHxK -> BxHxM
self.feature_embed = nn.Linear(self.linearProjectionSize,
self.codebookTokenDimension)
def forward(self, x):
# 之前: BxDxK
x = x.transpose(2,1)
# 之后: BxKxD
# 之前: BxKxD
x = self.initial_linear(x)
# 之后: BxKxH
# 之前: BxKxH
for mixer in self.mixer_layers:
x = mixer(x)
# 之后: BxKxH
# 之前: BxKxH
x = self.mixer_layer_norm(x)
# 之后: BxKxH
# 之前: BxKxH
x = x.transpose(2,1)
# 之后: BxHxK
# 之前: BxHxK
x = self.token_linear(x)
# 之后: BxHxM
# 之前: BxHxM
x = x.transpose(2,1)
# 之后: BxMxH
# 之前: BxMxH
x = self.feature_embed(x)
# 之后: BXMxM
return x编码器接收一组二维关键点坐标,通过基于MLP-Mixer架构设计的网络结构将这些坐标转换为M个潜在标记特征。具体而言,关键点首先被嵌入到高维空间,然后在关节和特征维度之间进行混合处理,最终投影到形状为B × M × D(批量大小×标记数量×标记维度)的输出特征空间。
EMA码本(VQ层)
class CodebookVQ(nn.Module):
def __init__(self, codebookDimension, numberOfCodebookTokens, decay=0.99, epsilon=1e-5):
super(CodebookVQ, self).__init__()
self.codebookDimension = codebookDimension
self.numberOfCodebookTokens = numberOfCodebookTokens
self.decay = decay
self.epsilon = epsilon
self.register_buffer('codebook', torch.empty(numberOfCodebookTokens, codebookDimension))
self.codebook.data.normal_()
self.register_buffer('ema_cluster_size', torch.zeros(numberOfCodebookTokens))
self.register_buffer('ema_w', torch.empty(numberOfCodebookTokens, codebookDimension))
self.ema_w.data.normal_()
def forward(self, encode_feat):
M = encode_feat.shape[1]
B = encode_feat.shape[0]
encode_feat = encode_feat.view(-1, self.codebookDimension) # [B*M, M]
# 计算与码本条目的距离
distances = (
encode_feat.pow(2).sum(1, keepdim=True)
- 2 * encode_feat @ self.codebook.t()
+ self.codebook.pow(2).sum(1)
) # [B*M, num_tokens]
# 找到最近的码本索引
encoding_indices = torch.argmin(distances, dim=1) # [B*M]
encodings = F.one_hot(encoding_indices, self.numberOfCodebookTokens).type(encode_feat.dtype) # [B*M, num_tokens]
# 量化输出
quantized = encodings @ self.codebook # [B*M, M]
quantized = quantized.view_as(encode_feat) # 重塑回原始输入形状
if self.training:
# EMA更新
ema_counts = encodings.sum(0) # [num_tokens]
dw = encodings.t() @ encode_feat # [num_tokens, M]
self.ema_cluster_size.mul_(self.decay).add_(ema_counts, alpha=1 - self.decay)
self.ema_w.mul_(self.decay).add_(dw, alpha=1 - self.decay)
n = self.ema_cluster_size.sum()
cluster_size = (
(self.ema_cluster_size + self.epsilon)
/ (n + self.numberOfCodebookTokens * self.epsilon) * n
)
self.codebook.data = self.ema_w / cluster_size.unsqueeze(1)
quantized = quantized.view(B, M, M)
encoding_indices = encoding_indices.view(B, M)
return quantized, encoding_indices潜在标记通过向量量化层进行离散化处理,该层采用指数移动平均(EMA)方法更新码本。在这一过程中,每个连续的标记向量都被码本中最相近的离散代码向量替换,从而将姿态表示转化为一组符号化的离散表示。具体实现中:
- 码本包含num_codes个代码向量条目
- 每个输入标记根据L2距离独立选择最相近的码本向量
- 码本在训练过程中通过EMA机制进行自我更新,确保码本适应训练数据分布
姿态解码器
class PoseDecoder(nn.Module):
def __init__(self, codebookTokenDimension=64, numberOfKeypoints=11, keypointDimension=2, hiddenDimensionSize=128, numberOfMixerBlocks=4, mixerInternalDimensionSize=64, mixerTokenInternalDimensionSize=128, mixerDropout=0.1):
super(PoseDecoder, self).__init__()
self.codebookTokenDimension = codebookTokenDimension
self.numberOfKeypoints = numberOfKeypoints
self.keypointDimension = keypointDimension
self.hiddenDimensionSize = hiddenDimensionSize
self.mixerInternalDimensionSize = mixerInternalDimensionSize
self.mixerTokenInternalDimensionSize = mixerTokenInternalDimensionSize
self.mixerDropout = mixerDropout
self.numberOfMixerBlocks = numberOfMixerBlocks
self.linear_token = nn.Linear(self.codebookTokenDimension, self.numberOfKeypoints)
self.initial_linear = nn.Linear(self.codebookTokenDimension, self.hiddenDimensionSize)
self.mixer_layers = nn.ModuleList([MixerLayer(self.hiddenDimensionSize, self.mixerInternalDimensionSize, self.numberOfKeypoints, self.mixerTokenInternalDimensionSize, self.mixerDropout) for _ in range(self.numberOfMixerBlocks)])
self.decoder_layer_norm = nn.LayerNorm(self.hiddenDimensionSize)
self.recover_embed = nn.Linear(self.hiddenDimensionSize, self.keypointDimension)
def forward(self, x):
# 之前: BxMxM
x = self.linear_token(x)
# 之后: BxMxK
# 之前: BxMxK
x = x.transpose(2,1)
# 之后: BxKxM
# 之前: BxKxM
x = self.initial_linear(x)
# 之后: BxKxH
# 之前: BxKxH
for mixer in self.mixer_layers:
x = mixer(x)
# 之后: BxKxH
# 之前: BxKxH
x = self.decoder_layer_norm(x)
# 之后: BxKxH
# 之前: BxKxH
x = self.recover_embed(x)
# 之后: BxKxD
# 之后: BxKxD
x = x.transpose(2,1)
# 之后: BxDxK
return x解码器模块负责接收量化后的标记并重建原始关键点坐标。其结构设计与编码器形成镜像对称,通过多层MLP处理和标记-特征混合操作,最终将离散表示投影回每个关节的二维坐标空间。
预训练码本和姿态解码器
在这一阶段,我们采用自监督重建策略来训练码本和姿态解码器。训练过程中使用两类关键损失函数:姿态重建损失和码本承诺损失:
图3:PCT模型的损失函数设计 - 来源:
https://arxiv.org/abs/2303.11638
重建损失采用目标姿态与预测姿态之间的平滑L1距离度量。承诺损失(Commitment loss)则确保编码器输出的连续向量与其被映射到的量化码本条目保持接近,这对于防止编码器忽略码本至关重要。如果缺少承诺损失,编码器可能会生成与实际码本条目相距甚远的任意向量,导致模型无法有效学习离散表示。
初始实验中,我们尝试同时训练组合编码器、码本和姿态解码器:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seed = 1
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# --- 数据集 ---
dataset = StickFigureDataset(
num_samples=10000,
image_size=64,
core_radius=1,
limb_radius=5
)
loader = DataLoader(dataset, batch_size=64, shuffle=True)
numberOfKeypoints = 13
dimensionOfKeypoints = 2
linearProjectionSize = 256
numberOfMixerBlocks = 16
codebookTokenDimension = 64
internalMixerSize = 64
internalMixerTokenSize = 32
mixerDropout = 0.1
encoder = CompositionalEncoder(numberOfKeypoints=numberOfKeypoints,
dimensionOfKeypoints=dimensionOfKeypoints,
linearProjectionSize=linearProjectionSize,
numberOfMixerBlocks=numberOfMixerBlocks,
codebookTokenDimension=codebookTokenDimension,
internalMixerSize=internalMixerSize,
internalMixerTokenSize=internalMixerTokenSize,
mixerDropout=mixerDropout).to(device)
codebook = CodebookVQ(codebookDimension=codebookTokenDimension,
numberOfCodebookTokens=codebookTokenDimension,
decay=0.99,
epsilon=1e-5).to(device)
decoder = PoseDecoder(codebookTokenDimension=codebookTokenDimension,
numberOfKeypoints=numberOfKeypoints,
keypointDimension=dimensionOfKeypoints,
hiddenDimensionSize=linearProjectionSize,
numberOfMixerBlocks=numberOfMixerBlocks,
mixerInternalDimensionSize=internalMixerSize,
mixerTokenInternalDimensionSize=internalMixerTokenSize,
mixerDropout=mixerDropout).to(device)
optimizer = torch.optim.Adam(
list(encoder.parameters()) +
list(decoder.parameters()),
lr=1e-4
)
encoder.train()
codebook.train()
decoder.train()
num_epochs = 20
beta = 0.25
for epoch in range(num_epochs):
epoch_loss = 0.0
num_batches = 0
for imgs, gt_keypoints in loader:
keypoints = gt_keypoints.permute(0, 2, 1).to(device)
optimizer.zero_grad()
token_feats = encoder(keypoints)
quantized, _ = codebook(token_feats)
reconstructed = decoder(quantized)
recon_loss = F.smooth_l1_loss(reconstructed, keypoints)
commitment_loss = F.mse_loss(quantized.detach(), token_feats)
loss = recon_loss + beta * commitment_loss
loss.backward()
optimizer.step()
epoch_loss += loss.item()
num_batches += 1
avg_loss = epoch_loss / num_batches
print(f"Epoch {epoch+1}/{num_epochs} - Average Loss: {avg_loss:.4f}")然而,我们观察到学习过程很快趋于饱和,模型仅学习了"平均"二维姿态关键点。深入分析发现,这是因为组合编码器的潜在向量对所有输入姿态都映射到码本中的相同条目,即发生了所谓的"码本崩溃"(codebook collapse)现象。
Epoch 1/20 - Average Loss: 18.5585
Epoch 2/20 - Average Loss: 14.4645
Epoch 3/20 - Average Loss: 11.6697
Epoch 4/20 - Average Loss: 9.7948
Epoch 5/20 - Average Loss: 8.3735
Epoch 6/20 - Average Loss: 7.2084
Epoch 7/20 - Average Loss: 6.5090
Epoch 8/20 - Average Loss: 6.0753
Epoch 9/20 - Average Loss: 5.6844
Epoch 10/20 - Average Loss: 5.4609
Epoch 11/20 - Average Loss: 5.3141
Epoch 12/20 - Average Loss: 5.2014
Epoch 13/20 - Average Loss: 5.1606
Epoch 14/20 - Average Loss: 5.1018
Epoch 15/20 - Average Loss: 5.1005
Epoch 16/20 - Average Loss: 5.0874
Epoch 17/20 - Average Loss: 5.0735
Epoch 18/20 - Average Loss: 5.0267
Epoch 19/20 - Average Loss: 5.0190
Epoch 20/20 - Average Loss: 5.0247图4:姿态编码器/解码器的端到端训练结果。注意所有输入都产生相似的解码结果,表明发生了"码本崩溃"现象。
为避免编码器输出被强制映射到单一码本条目的问题,我们采用了分阶段训练策略:首先在不使用码本的情况下训练编码器和解码器,然后冻结编码器权重,并使用码本重新训练新的解码器:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seed = 1
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# --- 数据集 ---
dataset = StickFigureDataset(
num_samples=10000,
image_size=64,
core_radius=1,
limb_radius=5
)
loader = DataLoader(dataset, batch_size=64, shuffle=True)
numberOfKeypoints = 13
dimensionOfKeypoints = 2
linearProjectionSize = 256
numberOfMixerBlocks = 16
codebookTokenDimension = 64
internalMixerSize = 64
internalMixerTokenSize = 32
mixerDropout = 0.1
encoder = CompositionalEncoder(numberOfKeypoints=numberOfKeypoints, dimensionOfKeypoints=dimensionOfKeypoints, linearProjectionSize=linearProjectionSize, numberOfMixerBlocks=numberOfMixerBlocks, codebookTokenDimension=codebookTokenDimension, internalMixerSize=internalMixerSize, internalMixerTokenSize=internalMixerTokenSize, mixerDropout=mixerDropout).to(device)
codebook = CodebookVQ(codebookDimension=codebookTokenDimension, numberOfCodebookTokens=codebookTokenDimension, decay=0.99, epsilon=1e-5).to(device)
decoder = PoseDecoder(codebookTokenDimension=codebookTokenDimension, numberOfKeypoints=numberOfKeypoints, keypointDimension=dimensionOfKeypoints, hiddenDimensionSize=linearProjectionSize, numberOfMixerBlocks=numberOfMixerBlocks, mixerInternalDimensionSize=internalMixerSize, mixerTokenInternalDimensionSize=internalMixerTokenSize, mixerDropout=mixerDropout).to(device)
optimizer = torch.optim.Adam(
list(encoder.parameters()) +
list(decoder.parameters()),
lr=1e-4
)
encoder.train()
codebook.train()
decoder.train()
num_epochs = 20
beta = 0.25
skipQuantization = True
print("Encoder pretraining")
for epoch in range(num_epochs):
epoch_loss = 0.0
num_batches = 0
for imgs, gt_keypoints in loader:
keypoints = gt_keypoints.permute(0, 2, 1).to(device) # [B, 2, 11]
optimizer.zero_grad()
token_feats = encoder(keypoints) # (B, M, M)
reconstructed = decoder(token_feats) # (B, K, D)
loss = F.smooth_l1_loss(reconstructed, keypoints)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
num_batches += 1
avg_loss = epoch_loss / num_batches
print(f"Epoch {epoch+1}/{num_epochs} - Average Loss: {avg_loss:.4f}")
# 初始训练后冻结编码器
for param in encoder.parameters():
param.requires_grad = False
# 重置解码器(这一行已经做到了)
decoder = PoseDecoder(codebookTokenDimension=codebookTokenDimension, numberOfKeypoints=numberOfKeypoints, keypointDimension=dimensionOfKeypoints, hiddenDimensionSize=linearProjectionSize, numberOfMixerBlocks=numberOfMixerBlocks, mixerInternalDimensionSize=internalMixerSize, mixerTokenInternalDimensionSize=internalMixerTokenSize, mixerDropout=mixerDropout).to(device)
# 更新优化器,只包括解码器(如有需要,可选择包括码本)
optimizer = torch.optim.Adam(
list(decoder.parameters()),
lr=1e-4
)
print("Codebook and Decoder training")
for epoch in range(num_epochs):
epoch_loss = 0.0
num_batches = 0
for imgs, gt_keypoints in loader:
keypoints = gt_keypoints.permute(0, 2, 1).to(device)
optimizer.zero_grad()
token_feats = encoder(keypoints) # (B, M, M)
quantized, _ = codebook(token_feats) # (B, M, M)
reconstructed = decoder(quantized) # (B, K, D)
recon_loss = F.smooth_l1_loss(reconstructed, keypoints)
commitment_loss = F.mse_loss(quantized.detach(), token_feats)
loss = recon_loss + beta * commitment_loss
loss.backward()
optimizer.step()
epoch_loss += loss.item()
num_batches += 1
avg_loss = epoch_loss / num_batches
print(f"Epoch {epoch+1}/{num_epochs} - Average Loss: {avg_loss:.4f}")分阶段训练策略的训练日志显示了明显改善的学习曲线:
Encoder pretraining
Epoch 1/20 - Average Loss: 18.5178
Epoch 2/20 - Average Loss: 14.1350
Epoch 3/20 - Average Loss: 10.7014
Epoch 4/20 - Average Loss: 8.3755
Epoch 5/20 - Average Loss: 6.5254
Epoch 6/20 - Average Loss: 4.8045
Epoch 7/20 - Average Loss: 3.7144
Epoch 8/20 - Average Loss: 2.9114
Epoch 9/20 - Average Loss: 2.2571
Epoch 10/20 - Average Loss: 1.7662
Epoch 11/20 - Average Loss: 1.4548
Epoch 12/20 - Average Loss: 1.2346
Epoch 13/20 - Average Loss: 1.0853
Epoch 14/20 - Average Loss: 0.9722
Epoch 15/20 - Average Loss: 0.9048
Epoch 16/20 - Average Loss: 0.8413
Epoch 17/20 - Average Loss: 0.7932
Epoch 18/20 - Average Loss: 0.7520
Epoch 19/20 - Average Loss: 0.7124
Epoch 20/20 - Average Loss: 0.6845
Codebook and Decoder training
Epoch 1/20 - Average Loss: 18.7635
Epoch 2/20 - Average Loss: 14.3140
Epoch 3/20 - Average Loss: 10.7931
Epoch 4/20 - Average Loss: 8.4169
Epoch 5/20 - Average Loss: 6.4152
Epoch 6/20 - Average Loss: 4.8894
Epoch 7/20 - Average Loss: 3.9022
Epoch 8/20 - Average Loss: 3.1704
Epoch 9/20 - Average Loss: 2.6313
Epoch 10/20 - Average Loss: 2.1175
Epoch 11/20 - Average Loss: 1.8104
Epoch 12/20 - Average Loss: 1.6105
Epoch 13/20 - Average Loss: 1.4768
Epoch 14/20 - Average Loss: 1.3906
Epoch 15/20 - Average Loss: 1.3409
Epoch 16/20 - Average Loss: 1.2982
Epoch 17/20 - Average Loss: 1.2638
Epoch 18/20 - Average Loss: 1.2331
Epoch 19/20 - Average Loss: 1.2075
Epoch 20/20 - Average Loss: 1.1834图5:采用组合编码器预训练策略后的重建结果
这种分阶段训练方法使码本和姿态解码器能够首先学习到有代表性的潜在向量分布,而不必等待编码器同步优化,从而有效避免了码本崩溃问题。
总结
向量量化自编码器(VQ-VAE)为学习离散且紧凑的潜在表示提供了强大的框架,使高效压缩和高质量重建成为可能。然而,这类模型在训练过程中可能面临"码本崩溃"问题,即只有少数码本嵌入被实际使用,从而限制了模型的表达能力。
通过实验验证,采用在引入向量量化之前独立预训练编码器的策略,或结合承诺损失调整与EMA更新等技术,可以有效缓解这一问题,确保码本的充分利用和模型的稳健学习。这种基于离散标记的姿态表示方法捕获了关键点之间的结构化关系,为后续的姿态分析和理解任务提供了新的可能性。
作者:Noahmuthler
相关推荐
- Python入门学习记录之一:变量_python怎么用变量
-
写这个,主要是对自己学习python知识的一个总结,也是加深自己的印象。变量(英文:variable),也叫标识符。在python中,变量的命名规则有以下三点:>变量名只能包含字母、数字和下划线...
- python变量命名规则——来自小白的总结
-
python是一个动态编译类编程语言,所以程序在运行前不需要如C语言的先行编译动作,因此也只有在程序运行过程中才能发现程序的问题。基于此,python的变量就有一定的命名规范。python作为当前热门...
- Python入门学习教程:第 2 章 变量与数据类型
-
2.1什么是变量?在编程中,变量就像一个存放数据的容器,它可以存储各种信息,并且这些信息可以被读取和修改。想象一下,变量就如同我们生活中的盒子,你可以把东西放进去,也可以随时拿出来看看,甚至可以换成...
- 绘制学术论文中的“三线表”具体指导
-
在科研过程中,大家用到最多的可能就是“三线表”。“三线表”,一般主要由三条横线构成,当然在变量名栏里也可以拆分单元格,出现更多的线。更重要的是,“三线表”也是一种数据记录规范,以“三线表”形式记录的数...
- Python基础语法知识--变量和数据类型
-
学习Python中的变量和数据类型至关重要,因为它们构成了Python编程的基石。以下是帮助您了解Python中的变量和数据类型的分步指南:1.变量:变量在Python中用于存储数据值。它们充...
- 一文搞懂 Python 中的所有标点符号
-
反引号`无任何作用。传说Python3中它被移除是因为和单引号字符'太相似。波浪号~(按位取反符号)~被称为取反或补码运算符。它放在我们想要取反的对象前面。如果放在一个整数n...
- Python变量类型和运算符_python中变量的含义
-
别再被小名词坑哭了:Python新手常犯的那些隐蔽错误,我用同事的真实bug拆给你看我记得有一次和同事张姐一起追查一个看似随机崩溃的脚本,最后发现罪魁祸首竟然是她把变量命名成了list。说实话...
- 从零开始:深入剖析 Spring Boot3 中配置文件的加载顺序
-
在当今的互联网软件开发领域,SpringBoot无疑是最为热门和广泛应用的框架之一。它以其强大的功能、便捷的开发体验,极大地提升了开发效率,成为众多开发者构建Web应用程序的首选。而在Spr...
- Python中下划线 ‘_’ 的用法,你知道几种
-
Python中下划线()是一个有特殊含义和用途的符号,它可以用来表示以下几种情况:1在解释器中,下划线(_)表示上一个表达式的值,可以用来进行快速计算或测试。例如:>>>2+...
- 解锁Shell编程:变量_shell $变量
-
引言:开启Shell编程大门Shell作为用户与Linux内核之间的桥梁,为我们提供了强大的命令行交互方式。它不仅能执行简单的文件操作、进程管理,还能通过编写脚本实现复杂的自动化任务。无论是...
- 一文学会Python的变量命名规则!_python的变量命名有哪些要求
-
目录1.变量的命名原则3.内置函数尽量不要做变量4.删除变量和垃圾回收机制5.结语1.变量的命名原则①由英文字母、_(下划线)、或中文开头②变量名称只能由英文字母、数字、下画线或中文字所组成。③英文字...
- 更可靠的Rust-语法篇-区分语句/表达式,略览if/loop/while/for
-
src/main.rs://函数定义fnadd(a:i32,b:i32)->i32{a+b//末尾表达式}fnmain(){leta:i3...
- C++第五课:变量的命名规则_c++中变量的命名规则
-
变量的命名不是想怎么起就怎么起的,而是有一套固定的规则的。具体规则:1.名字要合法:变量名必须是由字母、数字或下划线组成。例如:a,a1,a_1。2.开头不能是数字。例如:可以a1,但不能起1a。3....
- Rust编程-核心篇-不安全编程_rust安全性
-
Unsafe的必要性Rust的所有权系统和类型系统为我们提供了强大的安全保障,但在某些情况下,我们需要突破这些限制来:与C代码交互实现底层系统编程优化性能关键代码实现某些编译器无法验证的安全操作Rus...
- 探秘 Python 内存管理:背后的神奇机制
-
在编程的世界里,内存管理就如同幕后的精密操控者,确保程序的高效运行。Python作为一种广泛使用的编程语言,其内存管理机制既巧妙又复杂,为开发者们提供了便利的同时,也展现了强大的底层控制能力。一、P...
- 一周热门
- 最近发表
- 标签列表
-
- HTML 教程 (33)
- HTML 简介 (35)
- HTML 实例/测验 (32)
- HTML 测验 (32)
- JavaScript 和 HTML DOM 参考手册 (32)
- HTML 拓展阅读 (30)
- HTML文本框样式 (31)
- HTML滚动条样式 (34)
- HTML5 浏览器支持 (33)
- HTML5 新元素 (33)
- HTML5 WebSocket (30)
- HTML5 代码规范 (32)
- HTML5 标签 (717)
- HTML5 标签 (已废弃) (75)
- HTML5电子书 (32)
- HTML5开发工具 (34)
- HTML5小游戏源码 (34)
- HTML5模板下载 (30)
- HTTP 状态消息 (33)
- HTTP 方法:GET 对比 POST (33)
- 键盘快捷键 (35)
- 标签 (226)
- opacity 属性 (32)
- transition 属性 (33)
- 1-1. 变量声明 (31)
