[seaborn] seaborn学习笔记1-箱形图Boxplot
zhezhongyun 2025-05-24 18:17 29 浏览
1 箱形图Boxplot
(代码下载) Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中用boxplot函数制作箱形图。该章节主要内容有:
- 基础箱形图绘制 Basic boxplot and input format
- 自定义外观 Custom boxplot appearance
- 箱型图的颜色设置 Control colors of boxplot
- 分组箱图 Grouped Boxplot
- 箱图的顺序设置 Control order of boxplot
- 添加散点分布 Add jitter over boxplot
- 显示各类的样本数 Show number of observation on boxplot
- 箱形图隐藏的数据处理 Hidden data under boxplot
#调用seaborn
import seaborn as sns
#调用seaborn自带数据集
df = sns.load_dataset('iris')
#显示数据集
df.head()sepal_length | sepal_width | petal_length | petal_width | species | |
0 | 5.1 | 3.5 | 1.4 | 0.2 | setosa |
1 | 4.9 | 3.0 | 1.4 | 0.2 | setosa |
2 | 4.7 | 3.2 | 1.3 | 0.2 | setosa |
3 | 4.6 | 3.1 | 1.5 | 0.2 | setosa |
4 | 5.0 | 3.6 | 1.4 | 0.2 | setosa |
1. 基础箱形图绘制 Basic boxplot and input format
- 一个数值变量 One numerical variable only
- 一个数值变量和多个分组 One numerical variable, and several groups
- 多个数值变量 Several numerical variable
- 水平箱型图 Horizontal boxplot with seaborn
# 一个数值变量 One numerical variable only
# 如果您只有一个数字变量,则可以使用此代码获得仅包含一个组的箱线图。
# Make boxplot for one group only
# 显示花萼长度sepal_length
sns.boxplot( y=df["sepal_length"] );# 一个数值变量和多个分组 One numerical variable, and several groups
# 假设我们想要研究数值变量的分布,但是对于每个组分别进行研究。在这里,我们研究了3种花的萼片长度。
# x花的品种,y花萼长度
sns.boxplot( x=df["species"], y=df["sepal_length"] );# 多个数值变量 Several numerical variable
# 可以研究几个数值变量的分布,比如说萼片的长度和宽度:
sns.boxplot(data=df.iloc[:,0:2]);# 水平箱型图 Horizontal boxplot with seaborn
# 用seaborn将你的箱图水平转动是非常简单的。您可以切换x和y属性,或使用选项orient ="h"
sns.boxplot( y=df["species"], x=df["sepal_length"] );2. 自定义外观 Custom boxplot appearance
- 自定义线宽 Custom line width
- 添加缺口 Add notch
- 控制箱的尺寸 Control box sizes
# 自定义线宽 Custom line width
# Change line width
# 根据linewidth改变线条宽度
sns.boxplot( x=df["species"], y=df["sepal_length"], linewidth=5);# 添加缺口 Add notch
# notch设置为true即可
sns.boxplot( x=df["species"], y=df["sepal_length"], notch=True);# 控制箱的尺寸 Control box sizes
# Change width
sns.boxplot( x=df["species"], y=df["sepal_length"], width=0.3);3. 箱型图的颜色设置 Control colors of boxplot
- 调色板的使用 Use a color palette
- 单种颜色的使用 Uniform color
- 每组的特定颜色 Specific color for each group
- 单组高亮 Highlight a group
- 添加透明色 Add transparency to color
# 调色板的使用 Use a color palette
# Python提出了几种调色板。您可以像Set1,Set2,Set3,Paired,BuPu一样调用RColorBrewer调色板,还有Blues或BuGn_r等调色板。
# 调色板各种颜色见 http://www.r-graph-gallery.com/38-rcolorbrewers-palettes/
# t通过plaette调用调色板,Use a color palette
sns.boxplot( x=df["species"], y=df["sepal_length"], palette="Blues");# 单种颜色的使用 Uniform color
# 当然您可以轻松地为每个盒子应用同样的颜色。最常见的是b: blue
# 颜色列表 https://matplotlib.org/examples/color/named_colors.html
sns.boxplot( x=df["species"], y=df["sepal_length"], color="skyblue");# 每组的特定颜色 Specific color for each group
# 用不用颜色描绘不同种类的花
my_pal = {"versicolor": "g", "setosa": "b", "virginica":"m"}
sns.boxplot( x=df["species"], y=df["sepal_length"], palette=my_pal);# 单组高亮 Highlight a group
# 设定某一组为红色,其他组为蓝色
my_pal = {species: "r" if species == "versicolor" else "b" for species in df.species.unique()}
sns.boxplot( x=df["species"], y=df["sepal_length"], palette=my_pal);# 添加透明色 Add transparency to color
# usual boxplot 正常绘图
ax = sns.boxplot(x='species', y='sepal_length', data=df);
# Add transparency to colors 设置透明色
for patch in ax.artists:
r, g, b, a = patch.get_facecolor()
patch.set_facecolor((r, g, b, .3))4. 分组箱图 Grouped Boxplot
# 当您有一个数值变量,几个组和子组时,将使用分组箱图。使用seaborn很容易实现。Y是您的数字变量,x是组列,而hue是子组列。
# 调用tips数据集
df_tips = sns.load_dataset('tips')
df_tips.head()total_bill | tip | sex | smoker | day | time | size | |
0 | 16.99 | 1.01 | Female | No | Sun | Dinner | 2 |
1 | 10.34 | 1.66 | Male | No | Sun | Dinner | 3 |
2 | 21.01 | 3.50 | Male | No | Sun | Dinner | 3 |
3 | 23.68 | 3.31 | Male | No | Sun | Dinner | 2 |
4 | 24.59 | 3.61 | Female | No | Sun | Dinner | 4 |
# Grouped boxplot 分组箱图
# x日期,y餐费,hue自组列,palette调色盘
sns.boxplot(x="day", y="total_bill", hue="smoker", data=df_tips, palette="Set1");5. 箱图的顺序设置 Control order of boxplot
#如果您按特定顺序设定组,则箱图通常会提供更多信息。这对seaborn来说是可行的。
# specific order 通过order自定义组
p1=sns.boxplot(x='species', y='sepal_length', data=df, order=["virginica", "versicolor", "setosa"]);# 中位数由大到小排列
# Find the order 设定中位数
my_order = df.groupby(by=["species"])["sepal_length"].median().iloc[::-1].index
# Give it to the boxplot
sns.boxplot(x='species', y='sepal_length', data=df, order=my_order);6. 添加散点分布 Add jitter over boxplot
# 可以在箱线图上添加每种类别的散点分布情况
# Usual boxplot 正常绘图
ax = sns.boxplot(x='species', y='sepal_length', data=df)
# Add jitter with the swarmplot function 添加散点分布
ax = sns.swarmplot(x='species', y='sepal_length', data=df, color="grey")7. 显示各类的样本数 Show number of observation on boxplot
# 显示每个组的观察次数可能很有用
# 基础的箱形图
ax = sns.boxplot(x="species", y="sepal_length", data=df)
# Calculate number of obs per group & median to position labels
# 计算各个种类的中位数
medians = df.groupby(['species'])['sepal_length'].median().values
# 统计各个种类的样本数
nobs = df['species'].value_counts().values
nobs = [str(x) for x in nobs.tolist()]
nobs = ["n: " + i for i in nobs]
# Add it to the plot
pos = range(len(nobs))
for tick,label in zip(pos,ax.get_xticklabels()):
ax.text(pos[tick], medians[tick] + 0.03, nobs[tick], horiznotallow='center', size='x-small', color='w', weight='semibold')8. 箱形图隐藏的数据处理 Hidden data under boxplot
- 添加分布散点图 boxplot with jitter
- 使用小提琴图 use violinplot
箱形图总结了几个组的数值变量的分布。但是箱形图的问题不仅是丢失信息,这可能会结果有偏差。如果我们考虑下面的箱形图,很容易得出结论,'C’组的价值高于其他组。但是,我们无法看到每个组中点的基本分布是什么,也没有观察每个组的观察次数。所以我们需要对隐藏的数据进行处理
# libraries and data
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Dataset:
a = pd.DataFrame({ 'group' : np.repeat('A',500), 'value': np.random.normal(10, 5, 500) })
b = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(13, 1.2, 500) })
c = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(18, 1.2, 500) })
d = pd.DataFrame({ 'group' : np.repeat('C',20), 'value': np.random.normal(25, 4, 20) })
e = pd.DataFrame({ 'group' : np.repeat('D',100), 'value': np.random.uniform(12, size=100) })
df=a.append(b).append(c).append(d).append(e)
# Usual boxplot
sns.boxplot(x='group', y='value', data=df);# 添加分布散点图 boxplot with jitter
ax = sns.boxplot(x='group', y='value', data=df)
# 通过stripplot添加分布散点图,jitter设置数据间距
ax = sns.stripplot(x='group', y='value', data=df, color="orange", jitter=0.2, size=2.5)
plt.title("Boxplot with jitter", loc="left")Text(0.0, 1.0, 'Boxplot with jitter')# 使用小提琴图 use violinplot
sns.violinplot( x='group', y='value', data=df)
plt.title("Violin plot", loc="left")Text(0.0, 1.0, 'Violin plot')相关推荐
- Python入门学习记录之一:变量_python怎么用变量
-
写这个,主要是对自己学习python知识的一个总结,也是加深自己的印象。变量(英文:variable),也叫标识符。在python中,变量的命名规则有以下三点:>变量名只能包含字母、数字和下划线...
- python变量命名规则——来自小白的总结
-
python是一个动态编译类编程语言,所以程序在运行前不需要如C语言的先行编译动作,因此也只有在程序运行过程中才能发现程序的问题。基于此,python的变量就有一定的命名规范。python作为当前热门...
- Python入门学习教程:第 2 章 变量与数据类型
-
2.1什么是变量?在编程中,变量就像一个存放数据的容器,它可以存储各种信息,并且这些信息可以被读取和修改。想象一下,变量就如同我们生活中的盒子,你可以把东西放进去,也可以随时拿出来看看,甚至可以换成...
- 绘制学术论文中的“三线表”具体指导
-
在科研过程中,大家用到最多的可能就是“三线表”。“三线表”,一般主要由三条横线构成,当然在变量名栏里也可以拆分单元格,出现更多的线。更重要的是,“三线表”也是一种数据记录规范,以“三线表”形式记录的数...
- Python基础语法知识--变量和数据类型
-
学习Python中的变量和数据类型至关重要,因为它们构成了Python编程的基石。以下是帮助您了解Python中的变量和数据类型的分步指南:1.变量:变量在Python中用于存储数据值。它们充...
- 一文搞懂 Python 中的所有标点符号
-
反引号`无任何作用。传说Python3中它被移除是因为和单引号字符'太相似。波浪号~(按位取反符号)~被称为取反或补码运算符。它放在我们想要取反的对象前面。如果放在一个整数n...
- Python变量类型和运算符_python中变量的含义
-
别再被小名词坑哭了:Python新手常犯的那些隐蔽错误,我用同事的真实bug拆给你看我记得有一次和同事张姐一起追查一个看似随机崩溃的脚本,最后发现罪魁祸首竟然是她把变量命名成了list。说实话...
- 从零开始:深入剖析 Spring Boot3 中配置文件的加载顺序
-
在当今的互联网软件开发领域,SpringBoot无疑是最为热门和广泛应用的框架之一。它以其强大的功能、便捷的开发体验,极大地提升了开发效率,成为众多开发者构建Web应用程序的首选。而在Spr...
- Python中下划线 ‘_’ 的用法,你知道几种
-
Python中下划线()是一个有特殊含义和用途的符号,它可以用来表示以下几种情况:1在解释器中,下划线(_)表示上一个表达式的值,可以用来进行快速计算或测试。例如:>>>2+...
- 解锁Shell编程:变量_shell $变量
-
引言:开启Shell编程大门Shell作为用户与Linux内核之间的桥梁,为我们提供了强大的命令行交互方式。它不仅能执行简单的文件操作、进程管理,还能通过编写脚本实现复杂的自动化任务。无论是...
- 一文学会Python的变量命名规则!_python的变量命名有哪些要求
-
目录1.变量的命名原则3.内置函数尽量不要做变量4.删除变量和垃圾回收机制5.结语1.变量的命名原则①由英文字母、_(下划线)、或中文开头②变量名称只能由英文字母、数字、下画线或中文字所组成。③英文字...
- 更可靠的Rust-语法篇-区分语句/表达式,略览if/loop/while/for
-
src/main.rs://函数定义fnadd(a:i32,b:i32)->i32{a+b//末尾表达式}fnmain(){leta:i3...
- C++第五课:变量的命名规则_c++中变量的命名规则
-
变量的命名不是想怎么起就怎么起的,而是有一套固定的规则的。具体规则:1.名字要合法:变量名必须是由字母、数字或下划线组成。例如:a,a1,a_1。2.开头不能是数字。例如:可以a1,但不能起1a。3....
- Rust编程-核心篇-不安全编程_rust安全性
-
Unsafe的必要性Rust的所有权系统和类型系统为我们提供了强大的安全保障,但在某些情况下,我们需要突破这些限制来:与C代码交互实现底层系统编程优化性能关键代码实现某些编译器无法验证的安全操作Rus...
- 探秘 Python 内存管理:背后的神奇机制
-
在编程的世界里,内存管理就如同幕后的精密操控者,确保程序的高效运行。Python作为一种广泛使用的编程语言,其内存管理机制既巧妙又复杂,为开发者们提供了便利的同时,也展现了强大的底层控制能力。一、P...
- 一周热门
- 最近发表
- 标签列表
-
- HTML 教程 (33)
- HTML 简介 (35)
- HTML 实例/测验 (32)
- HTML 测验 (32)
- JavaScript 和 HTML DOM 参考手册 (32)
- HTML 拓展阅读 (30)
- HTML文本框样式 (31)
- HTML滚动条样式 (34)
- HTML5 浏览器支持 (33)
- HTML5 新元素 (33)
- HTML5 WebSocket (30)
- HTML5 代码规范 (32)
- HTML5 标签 (717)
- HTML5 标签 (已废弃) (75)
- HTML5电子书 (32)
- HTML5开发工具 (34)
- HTML5小游戏源码 (34)
- HTML5模板下载 (30)
- HTTP 状态消息 (33)
- HTTP 方法:GET 对比 POST (33)
- 键盘快捷键 (35)
- 标签 (226)
- opacity 属性 (32)
- transition 属性 (33)
- 1-1. 变量声明 (31)
